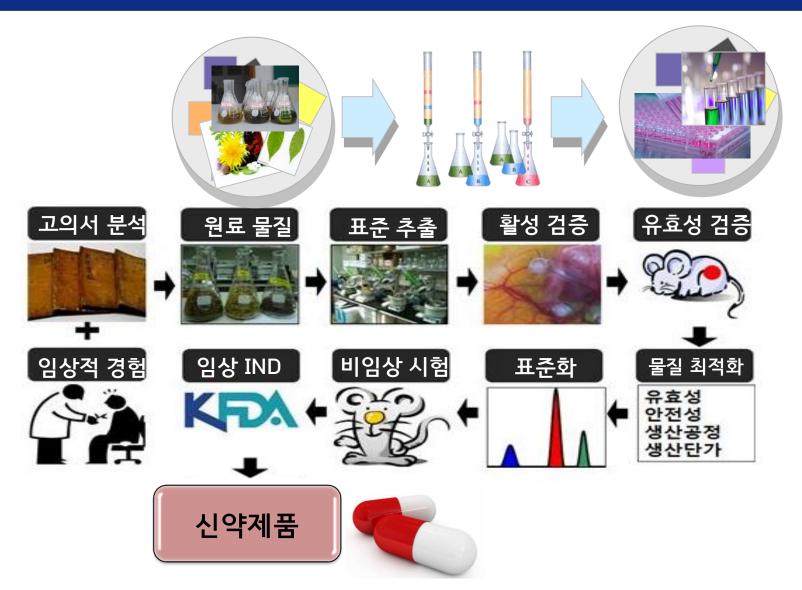
바이오식품과학부/영양생화학실험

Animal experiment

이혜련

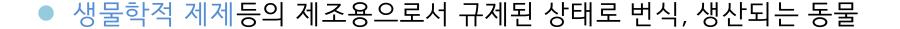
목 차

- 실험동물(Laboratory animals)
- 동물실험(Animals experiment)
- 실험동물의 종류 및 특징
- 질환모델동물
- 동물실험에 영향을 미치는 요인
- 동물실험시설 등의 운영관리


비임상 실험(Nonclinical experiment)

신물질에 대한 독성발현 및 부작용평가 신물질에 대한 약리학적 효과를 평가 2. 유효성평가• 1. 안전성평가 (효능평가) (독성평가) 비임상 4. 약물분석 3. 안전성약리 죽는다

약물개발 단계에서의 치료용량 또는 그 이상 노출시 바람직하지 않은 생리학적 효과를 평가


체내에서의 약물동태 및 독성동태의 특성 연구

신약 후보 물질 발굴 과정

실험동물(Laboratory animals)

- 동물실험을 목적으로 사용 또는 사육되는 모든 동물
- 생명과학을 위한 시험, 연구, 교육자료로서,



어떤 자극에 대하여 일정한 반응을 나타내는 생물도량형(biomeasures)
 즉, "살아 있는 시약"이라 함.

실험동물(Laboratory animals)

무척추동물

C. elegans (편형동물)

오징어 (연체동물)

초파리 (곤충류)

지렁이 (환형동물)

가재 (극피동물)

불가사리 (극피동물)

척추동물

Zebra fish (어류)

닭 (조류)

양 (포유류)

개구리 (양서류)

거위 (조류)

고양이 (포유류)

뱀 (파충류)

염소 (포유류)

(9종)

기니피그

실험동물의 계통

계통(Strain)

- 실험동물 분야에서 사용되는 용어
- 계획적인 교배방법에 의해 유지되고 있는 유래가 명백한 동물군
- 일반적으로 그 동물이 공통으로 무언가의 특징을 가지고 있음

Mouse	3,000계통 이상	Pig	10계통 이상	Primates	20계통 이상
Rat	700계통 이상	Cat	15계통 이상	Chinese Hamster	15계통 이상
Rabbit	60계통 이상	Dog	15계통 이상	Syrian Hamster	50계통 이상
Goat	10계통 이상	Guinea-pig	80계통 이상	Mongolian Gerbil	10계통 이상

From international index of laboratory animals(1993)

국내 동물실험 동물 사용 현황

(단위: 마리, 2013년 기준)

기관별

15만 3842 의료기관

33만 8704 국 · 공립기관 59만 7018 대학 87만 7194 기업체

합계 196만 6758

동물별

마우스-----142만 7233 렛드-----31만 3274 기니피그-----5만 3272 햄스터류-----3456 기타설치류-----801

토끼3만	9073
돼지	9118
7ዘ	8655
소	6268
원숭이	1374
고양이	803
염소	658
미니피그	74
기타포유류	1027

닭-----4만 2907 기타조류----1657

파충류 -----128

양서류-----1688

어류-----3만 9632 기타척추동물 -----160 기타 -----1만 5500

자료:농림축산검역본부

동물실험(animals experiment)

- 동물을 이용하여 실험을 수행하고 동물이 나타나는 반응을 관찰
- 그 반응을 통하여 사람이나 동물종에 어떤 효과를 가져오는가를 예측
- 교육·시험·연구 및 생물학적 제제의 생산 등 과학적 목적을 위하여
 실험동물을 대상으로 실시하는 실험 또는 그 과학적 절차

Sulfanilamide

- 시판 전 약물의 독성에 대한 검사 의무 ×
- Sulfanilamide+ diethylene glycol에 용해

<u>식품, 약물, 화장품에 관한 **안전성의 검증이 법적으로 요구**</u>

동물실험(animals experiment)

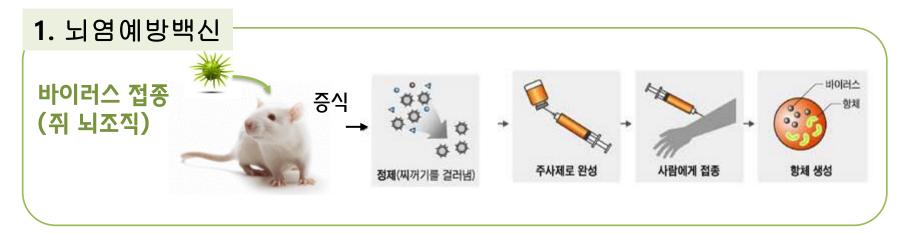
실험동물의 용도

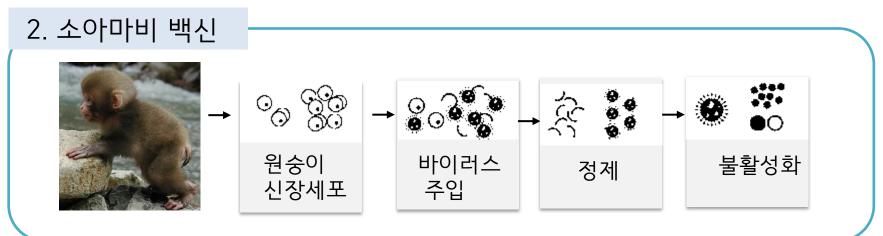
- ① 질병 유전자 분석 🖒 원인 유전자 규명
- ② 조기 진단 기초 자료 확보 🖈 질병 표지 인자
- ③ 질병 원인 규명
- ④ 신약 타깃 검증 ➡️ 안전성, 유효성 평가
- ⑤ 약효 검증 🖈 사람에서 약효 예측

의약품

농약

일반화학물질 기타(화장품,수의약품,식품등)


실험동물의 용도

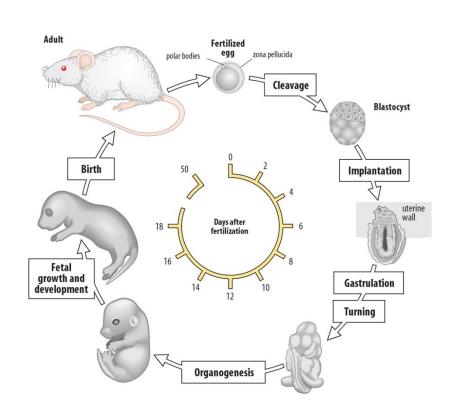

1. 신약개발을 위한 검정용

실험동물의 용도

2. 백신 등 제조용

실험동물의 용도

3. 연구용


동물실험을 하는 이유

- 인체실험의 대체
- 인체시험(사람을 이용한 임상실험)을 피해야 한다는 윤리적 문제
- 정확한 의학·생물학의 정보수집이 있음
- 경제적인 면

동물실험에서 얻을 수 있는 정보

- 랫드는 세대교체가 빨라 2년이면 거의 90%의 수명
- 장기복용(혈압약)하는 약물은 전 생애 동안 투여하는 발암성시험이 요구
- 랫드에 2년 동안 약물을 투여함으로써 사람의 전 생애 동안 약물 투여하는 것 과 동등한 정보를 얻음
- 랫드의 짧은 수명주기 때문에 1개월간 약물투여는 사람에서 30개월 이상 약물 투여와 유사한 결과

동물실험의 역사

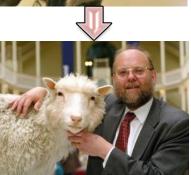
연대	과학자	동물실험
BC 5세기	알크마이온 Alcmaeon of Croton	 개의 눈을 해부하여 시신경(optic nerve) 발견 기록상 최초의 동물실험
BC460~BC370	히포크라테스 Hippocrates	 동물 해부를 통해 생식과 유전 연구 동물실험의 기초 마련
BC 384-322	아리스토텔레스 Aristotle	• 동물해부를 통한 비교해부학과 발생학 연구
BC 304-250	에라시스트라투스 Erasistratus	 사람과 동물의 뇌 연구 '생리학의 아버지'
129-216	클라우디우스 갈렌 Claudius Galen	원숭이, 돼지, 염소 등을 해부심장, 뼈, 근육, 뇌신경 등 의학적 사실 규명

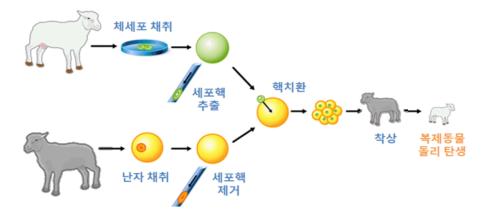
동물실험의 역사

연대	과학자	동물실험
	⇩ 19세기 이후	독성학, 생리학 등의 본격적으로 활용
1880년대	루이스 파스퇴르 Louis Pasteur	• 양에 탄저균 접종하여 세균설(germ theory) 연구
1902	이반 파블로프 Ivan Pavlov	 개의 타액분비 실험을 통해 고전적 조건형성 연구 (조건반사, conditioned reflex)
1921	밴팅 Fred G. Banting	• 동물의 췌장에서 인슐린 발견
1957		• 러시아 개(Laika)를 스푸트니크 1호에 태워 우주실험 을 함
1974	루돌프 재니쉬 Rudolf Jaenisch	• 유전자 재조합을 통해 최초로 형질전환마우스를 개발
1997	윌머트 Wilmut	• 복제양 돌리 생산

동물실험의 역사

Alcmaeon (BC 5세기) 기록상 최초의 동물실험


Galen(120s)


Pavlov(1900s)

Wilmut(1997) ====

교육, 연구목적

- **재현성**: 반복해서 실험을 하더라도 동일하거나 유사한 결과를 얻을 수 있음
- **정밀도 (신뢰성)**: 실험오차를 최소화 할 수 있음
- 용이성: 시험, 교육, 연구를 쉽게 수행할 수 있고 외적 변수에 영향을 받지 않음
- **다양성**: 다양한 실험목적에 따라 사용이 가능함.

연구목적 이외 측면

- 사육이 편리
- 여러 세대 걸쳐 시험가능
- 번식력 강함
- 손쉽게 동물을 구할 수 있음

교육, 연구목적

- 적용성
 - 인간과 동물이 공유하는 질병은 1.16%에 불과
 - 사람에게도 동일한 결과 얻을 수 있냐의 문제
- 종 특이성: 품종에 따라 시험의 특성과 결과가 달라짐

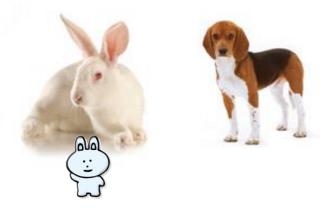
연구목적 이외 측면

- 비윤리적
- 근친교배 (원하는 품종 얻기 위해 유전자조작, 근친교배 등 실시)

● 입덧 치료제-Thalidomide

- Frances Oldham Kelsey(1914년 7월~2015년 8월)
- 미국식품의약국(FDA), 독일에서 들어온 "케바돈" 약 검토

1. C₁₃H₁₀N₂O₄

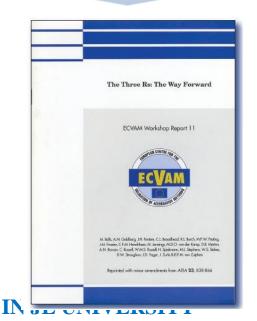

NH

D형 -Thalidomide L형 -Thalidomide

3.

Practical Assessment of Animal Pain

- 동물간의 상호작용과 개체별 태도 관찰
- 비정상적인 행동이나 자세 관찰시 주관적 또는 객관적 평가 방법 적용
- 행동자극(evoked behavior)후 반응 관찰
- 생리학적 (예, 임신), 환경적 조건의 변화


기초 및 응용 연구에 서의 **동물 수의 증가** 원물 사용방법을 어떻게 결정하여야 하는가?

Russell과 Burch

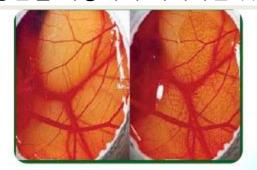
1959년 출판

1 Reduction(동물수의 감소)

- 유용한 목적에 활용하고, 통계적으로 믿을 만한 자료를 산출할 수 있도록 최
 소한의 동물 수 사용
- In vitro test 등의 예비실험 결과 등의 활용으로 최소한의 동물을 사용
- 질환모델동물 사용
- 정확한 실험동물 모델 선택
- 동물 관리를 철저히 하여 불필요한 소실을 최소화
- 정확한 통계학적 분석
- 불필요한 반복 또는 중복실험 배제

2 동물실험 대체(Replacement)

• 동물실험을 하등동물, 미생물 외에 컴퓨터 시뮬레이션으로 바꾸는 것, 세포 또는 조직배양으로 대체


화장품 독성시험 시 안점막자극시험

유정란을 이용하여 대체하는 것

개코원숭이 충돌시험에 사용

기구 마네킹(충돌 테스트 인형) 사용

대안

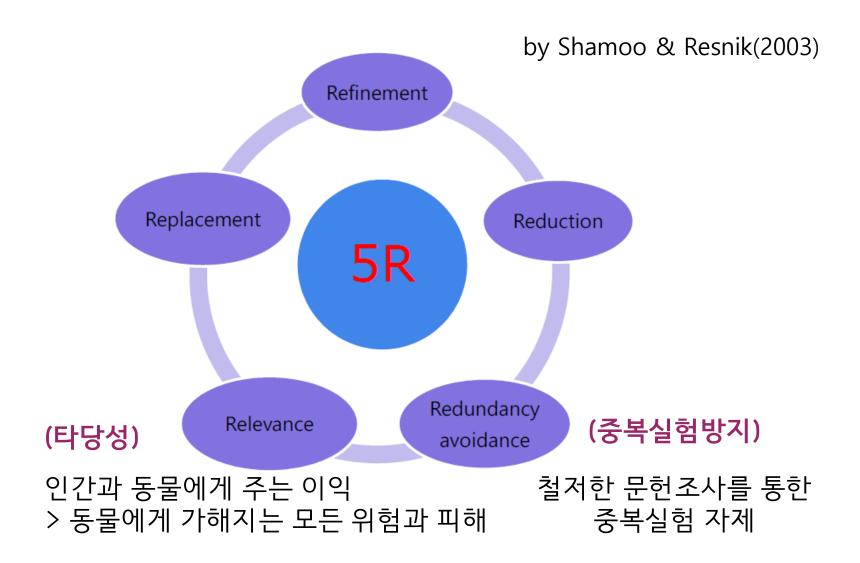
3 개선, 개량(Refinement)

- 쾌적한 환경에서 사육, 관리
- 절차를 정교화, 마취제 등을 사용 → 동물의 고통, 스트레스 등 최소화

바닥면적·공간이 극히 적은 케이지 또는 우리에서 개별적으로 사육

정상적인 형태로 행동할 수 있도록 복잡한 환경에서 사회적 그룹으로 사육

복잡한 환경 사육



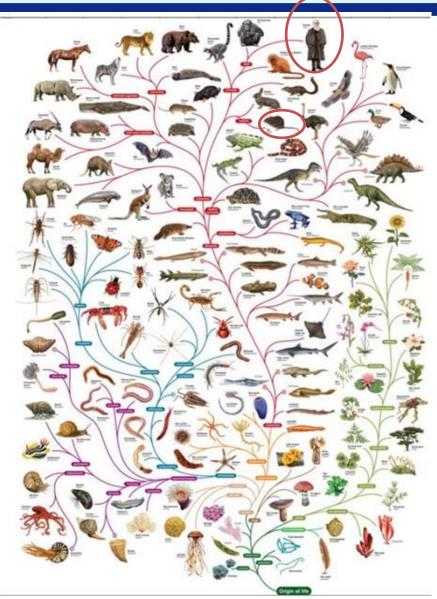
격리 사육

IN JE UNIVERSITY

인도적 동물실험을 위한 계획

1. 마우스(Mouse)

- 사용빈도가 가장 높은 실험동물 (약60%)
- 수명은 2~3년, 20~50g
- 마우스를 실험동물로서 많이 사용하는 이유?
- (1) 임신 기간과 세대교체의 진행이 빠르다.
- (2) 체형이 작고 번식력이 높고 질병에 강하여 각종 동물실험에 유리함.
- (3) 사육관리가 용이, 다수의 동물을 일시에 사용할 수 있어 통계적 결론 도출
- (4) 유전적 특성을 달리하는 많은 계통이 있어 연구목적에 적합한 다양한 계통


선택이 가능

phylogenetic tree

1. 마우스(Mouse)

- (5) 척추동물, 포유동물로서, 구조적으로 사람과 유사한 장기를 갖고 있음 - 사람 질병에 동일하게 감수성을 보이 는 경우가 많음
- (6) 유전적 염색체의 배열이 매우 유사하 게 보존 되어 있으며, 인간과 마우스와의 유전적 상동성이 비교적 높다.

ICR (일반독성시험)

BALB/o (면역연구, 단크론항체 생산)

SCID (심한 면역부전증, 인체종양이식)

C57BL/6 (면역시험, 발모시험등)

NOD (비비만형,1형 당뇨모델)

hairless 마우스 (경피흡수시험, 피부, 화장품시험)

DBA/2 (면역시험, 종양연구)

KK (2형 당뇨 모델)

누드 마우스와 정상 마우스 (인체종양이식)

2. 랫드(Rat)

- 수명은 2~3년 , 체중 200~800g
- 마우스와 비교하여 몸집이 크므로
 - <u>외과적 수술조작이 용이 하고 시료 채취에도 많은 양을 얻을 수 있다.</u>
- 영양이나 대사 생리적 측면에서 다른 종류의 동물보다 사람과의 유사성이 높고 성장과 영양적 요구의 예측이 가능하다.
- 종양연구에 관련한 기초데이터가 확립되어있어 종양실험에 많이 사용된다.
- 내분비, 생식, 비유의 측면에서 성주기의 판정이 마우스보다 편리하고 규칙적이며 사람의 월경주기와의 상관성에서 유사성이 높다.

Wistar(일반연구, 발암성시험)

Zucker rat (비만모델)

Brown Norway/ Non-agouti brown색

Long Evanse(LE)

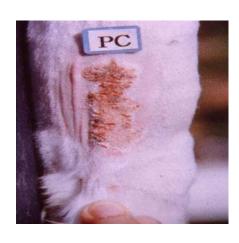
SHR (선천성고혈압)

OLETF(당뇨)

누드 마우스

누드 랫드

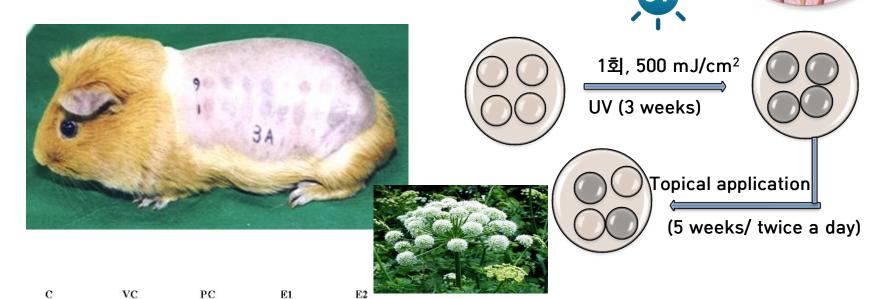
-0


3. 기니피그(Guinea pig)

Strain 2/SIc

Hartley

● 미생물적 연구


- 결핵, 부르셀라, 디프테리아, Q열, 뇌염 등의 감염 실험에 사용
- 피부 알레르기에 대한 실험

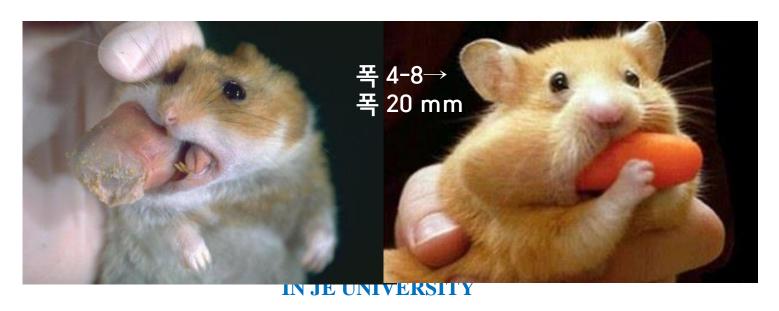
- 비타민C 부족에 의한 연구
 - <u>Vitamin C 합성불가(반드시 공급)</u>, 결핍 시 괴혈병이 유발
 - 비타민C에 대한연구, 비타민함유량의 측정에 사용
- 특이 체질을 이용한 연구
 - 항생물질에 대한 감수성으로 부작용에 대한 검정용
 - 산소결핍에 대한 저항성으로 산소 소비량 실험에 사용

페니실린에 의한 쇼크반응 (마우스보다 100~1000배 민감)

● 미백 기능평가 실험

[그림] 백지 에탄올추출물을 도포한 브라운 기니 픽 피부에서 멜라닌 색소침착 육안적 관찰

Melanocyte


Melanin

A: before treatment B: after 5-week treatement, C: UVB irradiation group, VC: vehicle treatment group, PC: 2% HQ(Hydroquinon) treatment group, E1: 1% ADEE treatment group, E2: 2% ADEE treatment group

-0

4. 햄스터(Hamster)

- 꼬리가 매우 짧고, **볼주머니(cheeck pouch)**, 사료를 일시 저장
- 볼 주머니에 림프관이 거의 없어 종양과 조직이식 연구에 많이 사용,
 암 연구, 세포유전 연구, 충치 연구 등에 사용
- 추위, 5℃ ↓ 음식 저장, 동면 (랫드, 마우스, 기니피그×)

Chinese hamster

- 동물실험으로 사용된 최초의 햄스터
- 당뇨병의 연구에 널리 사용
- 염색체수는 설치류 중에서 가장 적고(2n=22) 염색체 형상이 명료하여 세포 유전학, 방사선유전학 및 약물에 따른 염색체이상 연구에 사용

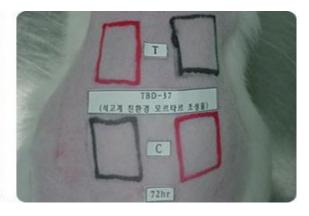
Golden hamster

- 포도상구균, 결핵균, 광견병, 일본뇌염바이러스에 감수성이 높아 <u>감염 실험</u>에 이용
- <u>볼주머니의 점막 이용</u>: 안점막자극시험, 암 이식시험, 혈류동태 연구 이용

-

5. 토끼(Rabbit)

- 적당한 체격: **외과수술, 실험장치 설비, 취급 용이**
- 배란주기는 없고, 교미자극에 의해 배란이 유도: **발생학, 번식생리학,** 내분비학 연구
- 큰 귀와 굵은 혈관: 혈관주사 및 채혈 용이
- 약물에 대한 반응성: 탈리도마이드(Thalidomide) 반응, 최기형 연구 (teratogenic study)


- 안점막자극시험
- 국소자극시험에 이용

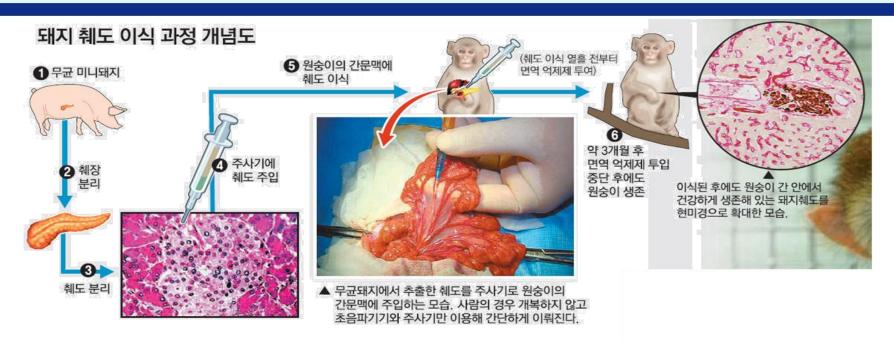
● 피부자극 시험

— 6. 비글(Beagle Dogs)

- 개의 종류는 380여종이 있으나 가장 많이 사용
- 비글견이 시험에 사용되는 이유
 - 중형으로 취급이 용이, 온순하여
 - 혈액 등 채취가 용이
 - 약물의 안전성 및 약효평가에 적합

- 7. 돼지(pig)

- 형태적, 생리적 사람과 높은 유사성
- 내과 심장기능, 심장질환, 동맥경화, 류마티스열, 위궤양
- 외과 콩팥, 심장 등 에 장기이식(<mark>장기크기 사람과 유사</mark>)
- 안과, 피부과, 치과, 방사선과, 영양학, 번식생리학, 유전학, 면역학


랜드레이스 (Landrace)

요크셔 (Yorkshire)

듀록 (Duroc)

- 문제점
 - 대부분 잡종으로 결과 불균일
 - 몸이 커서 외과수술이나 실험상 취급 곤란, 사육경비 많이 소요
 - 병원, 비병원 미생물을 비발현성으로 보유

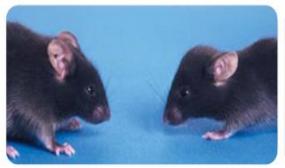
종류	연구분야
마우스	종양학, 미생물관계의 연구, 약리학, 유전학, 면역학, 내분비 연구
랫드	종양학, 독성실험
햄스터	종양학, 발육 및 노화연구, 바이러스 연구 (광견병, 일본뇌염바이러스 등 연구)
기니피그	약리학, 면역학, 병리학, 대사연구
토끼	약리학, 면역학, 혈액·병리·대사연구, 내분비연구
돼지	순환기계·소화관 연구 대사·영양학 연구, 피부연구
개	외과, 순환기, 소화기 , 내분비 , 호흡기, 치과, 비뇨기 연구

질환모델동물

- 사람에 있는 질병과 똑같거나 비슷한 질병을 갖고 있는 동물.
- 질환모델동물은 사람의 여러 질병 기전 연구 및 치료제 연구에 사용
- 자발적인(spontaneous) 모델과 유도된(induced) 모델로 구분
 - •**자발적인 동물 모델** : 사람의 질병과 유사한 선천적 질환을 가진 동물
 - •유도된 동물 모델: 외과적인 수술이나 약물처치, 유전자조작 등을 통해서 비정상적 상태가 된 동물로 인위적으로 만든 동물

질환모델동물

피부얼룩증,백피증 (Piebaldism)


발가락과다증

ob/ob 마우스 (고혈당 비만모델)

아토피 모델

뇌수종모델

백내장

파킨스병모델

근위축증 모델

동물실험의 적절한 실시 요령

● 신뢰성과 재현성 확보

1. 동물의 선정

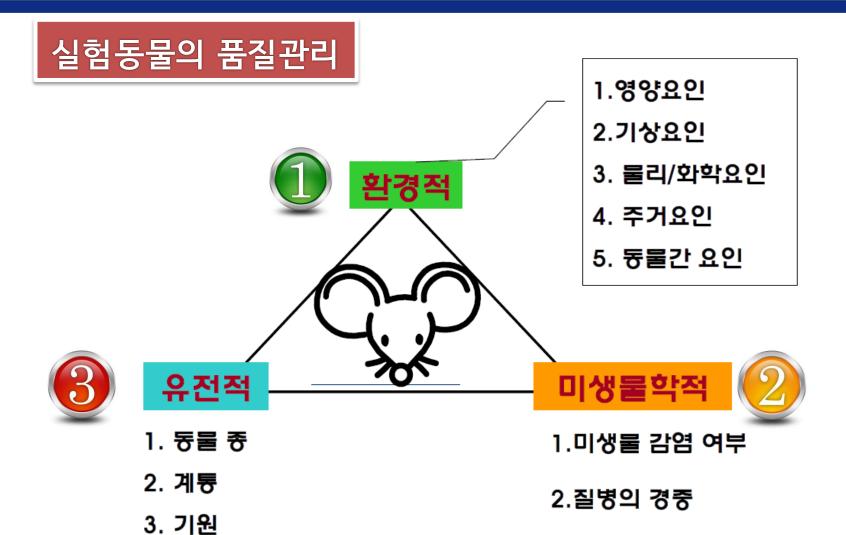
• 실험목적에 적합한 동물 선정(실험동물 규격화, 유전적으로 균질화)

2. 적절한 사육관리

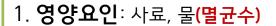
• 설정된 환경조건 하에서 사육하고 충분한 영양분을 급여하고, 감염의 방지에 노력하며, 엄격히 규제된 사육환경과 표준화된 시설에서 사육

3. 실험 담당자

• 각 실험행위를 분담하여 담당 책임자를 두고, 계획에 따라 실시하도록


4. 동물개체의 식별

• 동물의 개체식별을 완벽하게 실시


5. 기록

실험결과에 영양을 미친다고 생각되는 사항에 관하여 상세하게 기록 ·
 보존하고 결과 해석에 이용

동물실험에 영향을 미치는 요인

동물실험에 영향을 미치는 요인

2. **기상요인**: 온도, 습도, 기압, 바람

3. **물리, 화학요인**: 소리, 조명, 냄새

4. **주거요인**: 건물, 케이지 재질, 깔짚 등

5. 동종동물간의 요인: 사회적 측면, 수용도

6. 이종동물간의 요인: 타종동물, 바이러스, 세균,

기생충 등의 감염원

환경적

동물측

실험

1.유전적요인: 동물의 종이나 계통

2. 성별요인: male, female

3. 연령요인: 태생기, 이유기, 성육기, 노령기

4. 질병요인: 각종 병원체에 의한 질병

미생물 감염 여부

- 1. 실험 실시 일자 및 시간
- 2. 매일 취급 시각 및 방법 등

유전적 차이에 의한 요인

1) 종(Species)

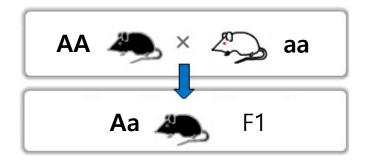
● 종(Species),속(Genus),과(Family),목(Order),강(Class),문(Phylum)분류

동물분류학적 위치

- 척추동물문 (Vertebrata)
- 포유동물강 (Mammalia)
- 설취목 (Rodentia)
- 쥐과 (Muridae)
- 생쥐속 (Mus)
- 생쥐종 (musculus)

mouse

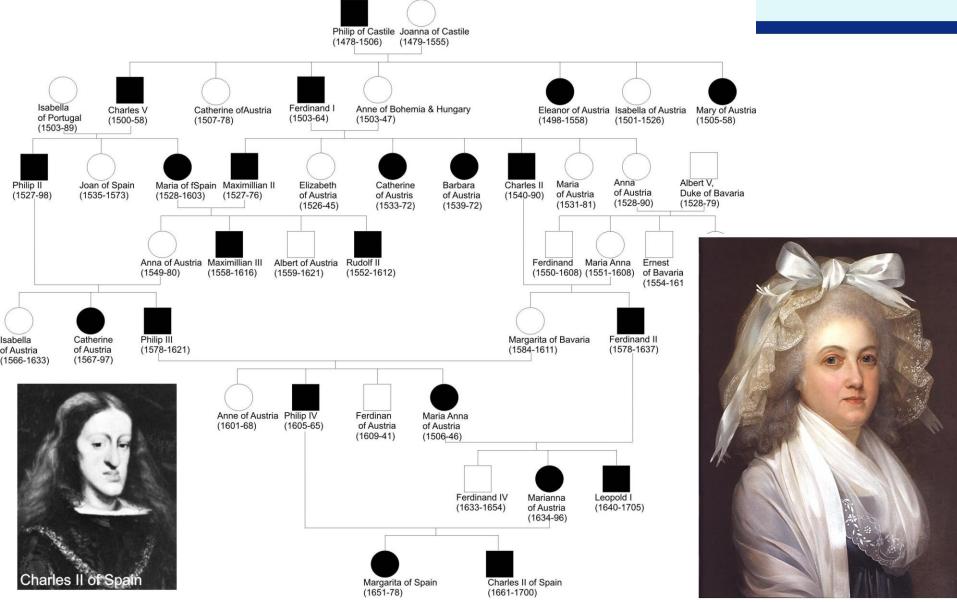
2) 품종(breed)


- 형질의 균일성 유지
- 실험 동물인 마우스, 랫드 등 사용 ×,

유전적 차이에 의한 요인

3) 계통(Strain) -유래가 명백한 동물군

- ① 근교계(Inbred strain)
 - 근친 교배를 되풀이하여 같은 형질을 가진 것만을 분리하여 만들어 낸 순계
 - 실험동물로 가장 많이 이용(적은 동물 수를 가지고도 높은 재현성)


- ② 교잡종(Hybrid strain)
 - 계통간 2개의 근교계에서 태어난 동물

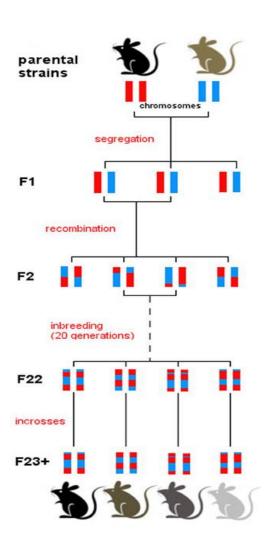
- ③ <u>돌연변이계(Mutant strain)</u>
 - 유전형질을 유지할 수 있도록 변이된 계통

무흉선 (BALB/c Foxn1nu/nu)

Habsburg Haus (함스부르크 왕가) 가계도

유전적 차이에 의한 요인

④ <u>폐쇄군(Closed strain)</u>


일정 기간 동안 외부의 이입 없이
 일정한 집단으로 번식시키고 있는 동물

⑤ <u>비근교계(outbred strain)</u>

- 상대적으로 수명이 길고 질병에 대한 저항성이 높아
- 대량생산에 적합

Recombinant inbred(RI) strain

- 서로 다른 근교계에서 태어난 F1교배
- F2개체를 무작위로 교배
- 처음 사용한 2종 근교계에서
 유전자 중 우성으로 나타나는 유전자 집단

계통	마우스특성	비고
ICR	• 발육이 빠르고, 번식이 용이, 일반독성 실험에 널리 사용	폐쇄군
ddY	• 백색, 성장 빠름, 높은 비만증	"
BALB/C	 높은 면역반응(단일 클론 항체생산에 필수적으로 사용) 방사선에 민감하고 인슐린에 감수성 	근교계
СЗН	• 유방암, 간암 발생실험	"
C57BL/6	 백내장에 높은 감수성, 뇌수종증 높음 탈모가 높으며, 고지방사료에서 비만, 당뇨, 동맥경화의 높은 감수성 	***
СВА	• 수컷의 간암 발생률이 높음, 저혈압, 홍역 바이러스 의 감수성이 높음	"
AKR	• 백혈병, 암 면역학 연구	"
DBA/2	 유방암의 발생율이 60% 전후, 임파종 발생이 높음 결핵균에 감수성이 높음, 소리에 민감, 비타민 K 결 핍증 유발이 용이 	"
KK	• 당뇨병 유발 모델동물, 비만의 유발	"
BALB/c/Foxn1 ^{nu/nu}	• 흉선이 없음, 면역기전 연구에 사용	돌연변이계
BDF1	• 종양연구와 면역학 연구에 주로 사용	교잡종

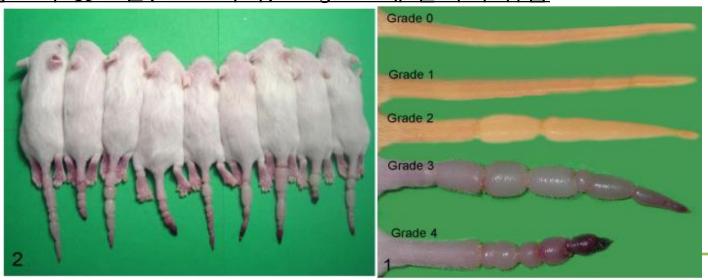
계통	랫드 특 성	비고
SD	 백색, 온순,번식성 양호, 비교적 대형 일반연구 검정용 약학, 독성학, 기형학 	폐쇄군
Wistar	 미국 필라델피아의 Wistar 연구소에 개발 백색, 온순, 번식성 양호, 소형 일반연구용, 생의학 실험, 종양병리학 등 실험에 유리 	"
SHR	 고혈압실험 질환모델 동물 교감신경계의 활성도 다른 동물에 비하여 높고 당뇨병과 고혈압모델, 행동연구에 중요한 모델동물로 유용 	근교계
WKY	생의학 실험용SHR 대조용 동물로 이용	""
F344	 장기독성, 발암성 실험에 이용 간장장애, 비타민 결핍증이 자주 나타남 Fe 결핍 연구 	n
LEW	관절염 발생, 장기이식 등의 질환모델로 이용Wistar 계에서 유래된 것으로 성질이 온순하고 다산성	"

항 목	기 준 치	비고
6 7	기 근 시	al 7.
온 도	23±1℃	동물의 발열량, SMR x 2-3 times
습 도	40~60%	냉 난방, 청소작업 고려
조 명	150~300Lux	바닥에서 40~85cm 높이
소 음	50 phon 이하	Hz, dB, 진동
기 류	13~18cm/sec	공중부유세균
배기	14~18회/hr	분진대책
취 기	20ppm 이하 (암모니아)	실험동물이 있는 경우
71 01	1~3mmAq	청정복도 < 사육시설
기 압	3~5mmAq	사육시설 > 오염복도
먼 지	10,000개 이하/ft³(0.5~5ợm)	실험동물이 없는 경우
낙하세균*	3개 이하	실험동물이 없는 경우
	30개 이하	실험동물이 있는 경우

1) 크기

 사육실의 크기는 케이지 랙 규격, 수용방식, 수용두수, 실내 온도, 습도, 기류, 조도의 균등성, 청정도, 사육관리, 작업방 식 등을 검토하고 결정하여야 함

テロス	체중	ᆌᄌᅟᄉᄋᄡᄭ	20m² (6평)표준사육실의 수용두수	
동물종		체중 수용방식	최대 수용 수	70~20% 실험용 사육
마우스	18g	케이지	5,000	3,500~1,000
랫 드	200g	케이지	1,000	700~200


2) 온도

- 너무 덥거나 추운 사육실은 동물에게 스트레스를 줄 수 있음
- 고온: 식이량 감소로 체중감소, 발육저하, 사산율 증가 등
- 저온: 발육저하, 털의 성장 지연

실험동물	섭씨온도(°ℂ)	화씨온도(°F)
마우스, 랫드, 햄스터, 저빌, 기니피그	18~26	64~79
토끼	16~22	61~72
고양이, 개, 비영장류	18~29	68~84
가금류	16~27	61~81

3) 습도

- 상대 습도범위는 대략 40~60%
- 식이섭취, 활동성에 영향
- 고습: 호흡문제가 유발되며 사료가 빠르게 부패됨
- Ring tail 현상: 꼬리가 ring모양으로 괴사, 꼬리가 절단되는 질병
 습도가 낮으면(30% 이하) ring tail에 걸리기 쉬움

4) 환기

- 환기 기능: 온/습도 유지, 냄새, 유해가스, 먼지, 전염성 인자의 농도 감소, 양질의 공기 공급
- 공기 중 미생물 수의 감소와 적절한 온·습도 유지에 도움
- 권장 환기횟수: 10~15회/hr
 (사육동물의 수와 주변 환경에 따라 다름)

5) 조명

- 명암주기, 밝기, 파장은 사육동물의 <u>생리적 영향(번식률)</u>을 미침
- 사육실의 조명의 밝기와 시간을 변경하는 것은 동물에게 스트레스를주고 동물생산에 영향을 미칠 수 있음
- ❖ Albino 종의 설치류가 300 Lux 이상의 밝은 빛에 장시간 노출되는경우 시력손상이 발생될 수 있음

● 자연광은 조명에 방해가 되므로 정상적인 사육실에는 창문이 없음

6) 소음

- 큰소리, 갑작스런 소리, 익숙지 않은 소리: 실험동물에 악영향
- 강음 내는 경우 : 경직, 방황, 폐사, 부신과 갑상선 비대, 난소, 자궁, 비장의 무게 감소, 혈압 상승

7) 사육용 기자재

1) 사료 급이기: 동물종/케이지별 다양, 사료섭취 용이, 오염방지

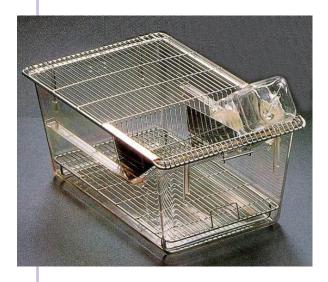
2) 급수기

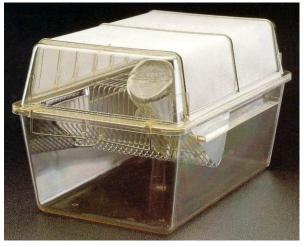
- 용기: 투명 경질 합성수지제, 유리제 등
- 뚜껑: 고무, 실리콘, 스크류형 수지제 등
- 자동급수: 탱크, 감압변, 노즐, 연결급수관 등

cage

3) 깔짚(Bedding)

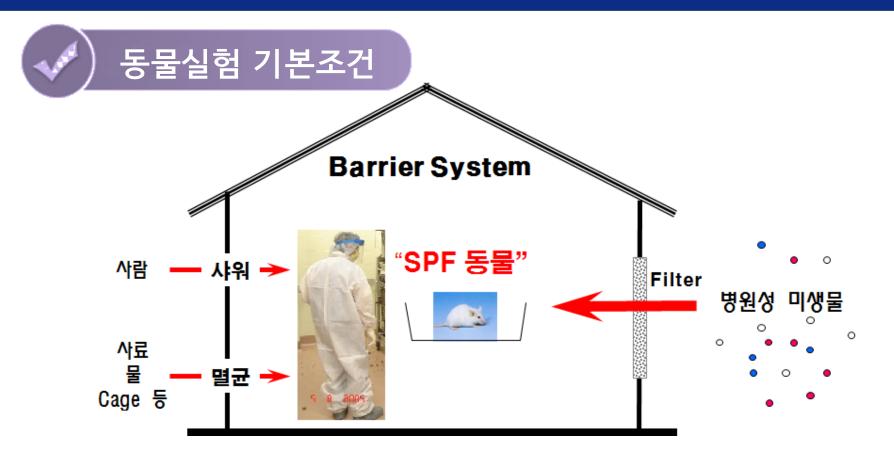
• 안락성, 흡수성 보온성 높고, 먼지 적고, 멸균




7) 사육용 기자재

4) 케이지(Cage)

• 조건: 주거성, 탈출/침입 방지, 세척 용이, 내구성


• Open Lid Type Cage (일반 실험에 적 용)

• Top Filter Type Cage (Open cage의 발전된 형 태)

 Micro isolation Type Cage (감염동물/청정 실험에 적용)

- SPF (Specific Pathogen Free) animal
- 특정질병을 유발하는 특정병원성미생물이 없는 동물 "도무나으은 이항 청정시성과 아정정 나오시스템이 피오

"동물사육을 위한 청정시설과 안정적 사육시스템이 필요"

시설의 세부분류

미생물, 기생충 등의 질병을 일으키는 원인체 존재여부에 따라 실험동물 분류

- ⑤ 격리방식 Isolator system(1)
 - Germ free animal

●격리방식 Isolator system(2)

Gnotobiotic animal

◎ 봉쇄방식 Barrier system

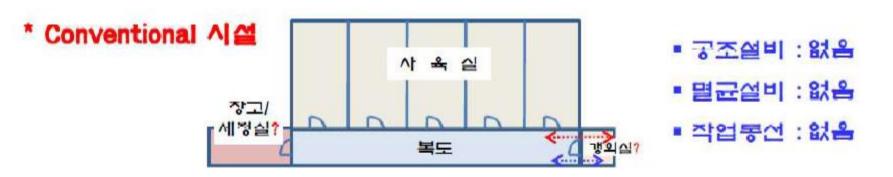
> SPF animal

[◎] 일반(개방)방식 Conventional system

Conventional animal

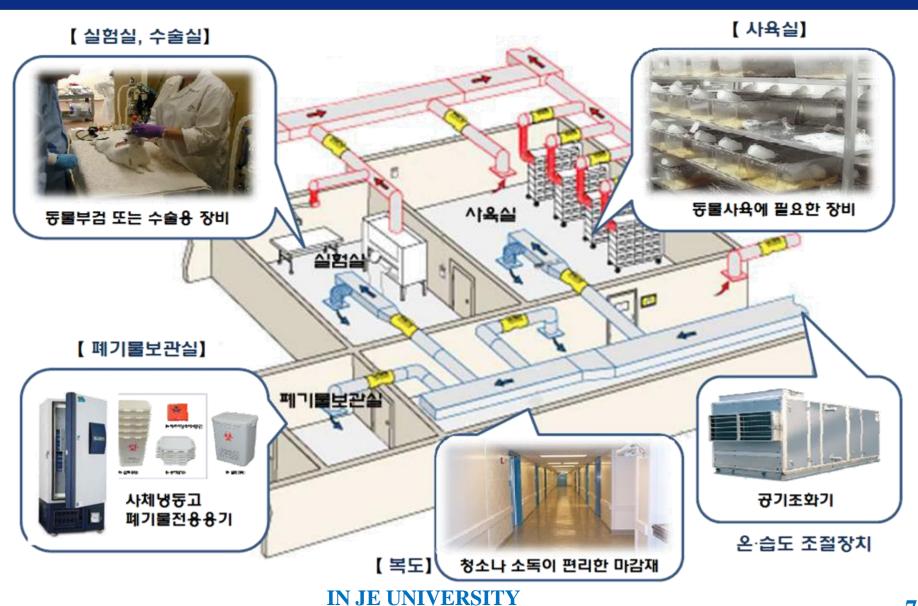
시설의 세부분류

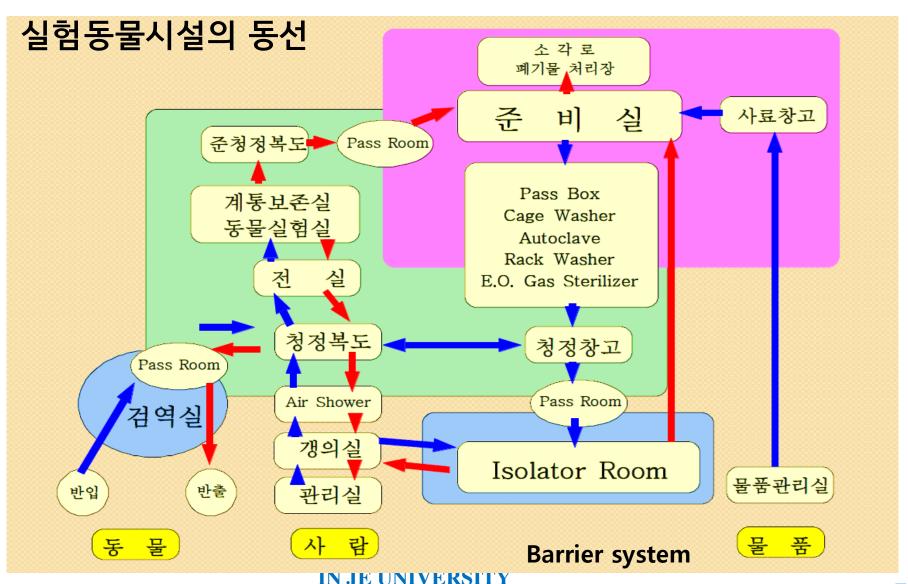
- 1) 격리방식(Isolator system)
 - (1) Germ Free or (2) Gnotobiotic animal
 - 동물의 사육공간은 완전한 무균상태를 유지할 수 있는 구조
- 2) 봉쇄방식(Barrier system)
 - SPF(Specific Pathogen Free) animal
 - 감염 미생물 차단 Clean system
- 3) 일반(개방)방식(Conventional system)
 - 재래적 방식 기본적 환경과 위생적 배려 필요
- * 봉쇄정도: Isolator>Barrier>Semi-barrier>Conventional system


● 실험동물의 미생물 요인에 의한 분류

분류	특징
무균동물 (germ free animal)	• 자궁적출술로 분만, 완전무균 격리 사육된 동물로 미생물(바이러스, 세균, 진균, 원충 등)에 전혀 노출된 적이 없는 동물
정착균 동물 (gnotobiotic animal)	• 명확하게 동정된 한 종 또는 그 이상의 미생물을 인위 적으로 정착시킨 동물
특정 병원체 부재 동물 (specific pathogen free(SPF) animal	• 특정한 병원체에 노출된 적이 없는 동물
일반사육동물 (conventional animal)	• 미생물에 대한 노출상태가 파악되어 있지 않고 예방도 않은 채 개방형 사육실에서 사육되고 있는 동물

* Isolator system





Animal health check

Ethical problem

Human health check

Microbiological monitoring

IN JE UNIVERSITY